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Abstract In many practical supply chain network design
(SCND) problems, the critical parameters such as customer
demands, transportation costs and resource capacities are
quite uncertain. The significance of uncertainty motivates
us to develop a new mean-risk fuzzy optimization method
for SCND problem, in which the standard semivariance is
suggested to gauge the risk resulted from fuzzy uncertainty.
To demonstrate the advantages of the proposed optimization
method, we define a new concept about the value of fuzzy
solution for our SCND problem. When the transportation
costs and the demands of customers have continuous pos-
sibility distributions, we approximate the continuous fuzzy
vector by a sequence of discrete fuzzy vectors. On the basis of
the approximation scheme, we obtain an approximating opti-
mizationmodel,which is a nonlinearmixed-integer program-
ming problem. Furthermore, we design a hybrid memetic
algorithm (MA) to solve the approximating optimization
problem. The designed hybrid MA incorporates the reduced
variable neighborhood search to act as the local search pro-
cedure. Finally, we conduct some numerical experiments via
an application example to demonstrate the effectiveness of
the designed hybrid MA.
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Introduction

A supply chain is a network of suppliers, manufacturing
plants, warehouses, and distribution channels organized to
acquire raw materials, convert these raw materials to fin-
ished products, and distribute these products to customers.
The SCND problem is to make the decisions to satisfy the
demands of customers and minimize the sum of strategic and
tactical costs. The goal of the SCND problem is to provide an
optimal platform for efficient and effective supply chainman-
agement. Geoffrion and Graves (1974) first described a com-
prehensive mixed-integer programmingmodel for the design
of supply chain networks. This model was later extended to
incorporate more realistic issues in production, warehous-
ing and distribution. For the development of deterministic
SCND problems, the interested reader may refer to Aikens
(1985), Cohen andLee (1989), Geoffrion and Powers (1995),
Alonso-Ayuso et al. (2003), Bachlaus et al. (2008), Bidhandi
et al. (2009), Cho and Lee (2012).

Inmany practical SCND problems, the critical parameters
such as customer demands, transportation costs and resource
capacities are quite uncertain. The significance of uncertainty
has motivated some researchers to address stochastic para-
meters in supply chain problems (Cheung and Powell 1996;
Sabri and Beamon 2000; Santoso et al. 2005; Georgiadis et
al. 2011; Yang et al. 2011;Mizgiera et al. 2012). In themean-
time, a number of researchers have proposed fuzzy optimiza-
tion approaches to modeling the supply chain problems. For
example, Petrovic et al. (1999) used fuzzy logic to interpret
imprecise information in an uncertain environment; Gian-
noccaro et al. (2003) proposed a fuzzy echelon methodology
for supply chain inventory management, in which triangu-
lar fuzzy numbers were used to model the uncertainty asso-
ciated with market demand; Wang and Shu (2005) devel-
oped a fuzzy supply chain model by using six-point fuzzy
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numbers; Zhou et al. (2008) considered a fuzzy two-echelon
supply chain composed by a manufacturer and a retailer, in
which the customer demands and the manufacturing costs
were modeled as fuzzy variables; Based on fuzzy analytic
network process and preemptive fuzzy integer goal program-
ming, Wong (2012) proposed a decision support system to
provide selections of logistics outsourcing providers in a
global supply chain; Kubat and Yuce (2012) proposed a gen-
eral framework, which combines analytic hierarchy process
(AHP), fuzzy AHP and genetic algorithm, to determine the
best set of suppliers, and Lee et al. (2012) proposed a fuzzy
analytic network process model to evaluate various aspects
of suppliers.

In this paper, we develop a new two-stagemean-risk fuzzy
optimization method for SCND problem. The objective of
the proposed optimization model is to minimize the total
expected costs and the risk of excessive costs. When the
underlying distribution of costs is asymmetric, the semi-
variance is more useful than the variance, so we employ
the standard semivariance of fuzzy variable as a new risk
measure in our SCND problem. To show the advantages of
the proposed optimization methods, we define a new con-
cept about the value of fuzzy solution for our SCND prob-
lem. When the fuzzy parameters have continuous possibil-
ity distributions, we cannot obtain the analytical expression
of the second-stage value function. Therefore, the proposed
two-stage SCND problem cannot be solved by conventional
optimization methods. In this case, we approximate the con-
tinuous fuzzy vector by a sequence of discrete fuzzy vec-
tors. On the basis of the approximation scheme, we obtain
an approximating optimization model, which is a nonlin-
ear mixed-integer programming problem. Furthermore, we
design a hybrid MA incorporating the RVNS to solve the
approximating SCND problem. The MA is an evolutionary
algorithm in which the local search plays a significant role.
The MA combines the global search and the local search
by using the genetic algorithm to perform the exploration
and exploitation. The MA has shown a great record of effi-
cient implementations, and provided good solution results
for complex optimization problems (Yeh 2006; Pishvaee et
al. 2010; Jolai et al. 2011; Urselmann et al. 2011).

The remainder of this paper is organized as follows. Sec-
tion “Formulation of mean-risk SCND problem” presents a
new two-stagemean-riskSCNDproblem.Section “Thevalue
of fuzzy solution inmean-risk SCNDproblem” defines a new
concept about the value of fuzzy solution for the proposed
two-stage mean-risk SCND problem. Section “The approx-
imation method for mean-risk SCND problem” discusses
the approximation scheme for the mean-risk SCND prob-
lem. Section “Hybrid solution methods” designs a hybrid
MA by incorporating the RVNS to solve the approximating
optimization problem. Section “Numerical experiments and
comparison study” conducts somenumerical experiments via

an application example to demonstrate the effectiveness of
the designed hybrid MA. The conclusions are summarized
in the last section.

Formulation of mean-risk SCND problem

In this section, we develop a fuzzy programming approach
to modeling the SCND problem. The notations of our SCND
problem are listed in Table 1.

In our SCND problem, building plants and warehouses
requires some time and decision makers don’t know in
advance the realizations of fuzzy variables, therefore the
decisions about plants andwarehouses aremade under uncer-
tainty. That is, the decisions (u j , wl) are the first-stage deci-
sion variables, they are taken before knowing the values of
uncertain costs and demands. After knowing the values of
fuzzy parameters, the decisions xi j , y jlk and zlmk are made
in the second stage, and they are referred to as the second-
stage decision variables.

Constraints (1) ensure that the raw material to plant j
meets the need of the plant, and the amount of products from
warehouse l to customers is equal to the amount of products
from plants to the warehouse l,
∑

i∈I
xi j = ∑

k∈K
rk

∑

l∈L
y jlk, ∀ j ∈ J,

∑

j∈J
y jlk = ∑

m∈M
zlmk, ∀l ∈ L ,∀k ∈ K .

(1)

For each realization γ of fuzzy demand dmk , the total
amount of product k from warehouses to customer m meets
the demand dmk(γ ) of the customer. If there is some short-
fall for the demand of the customer, then we introduce an
additional term to penalize this shortfall. This situation is
expressed as constraints (2),
∑

l∈L
zlmk + z̃mk ≥ dmk(γ ), ∀m ∈ M,∀k ∈ K . (2)

During the production process, the plants and warehouses
have their capacity, and the products are less than the quantity.
We model the capacity limitations by constraints (3),
∑

j∈J
xi j ≤ si , ∀i ∈ I,

∑

k∈K
r Pjk

∑

l∈L
y jlk ≤ a ju j , ∀ j ∈ J,

∑

k∈K
r Llk

∑

j∈J
y jlk ≤ hlwl , ∀l ∈ L .

(3)

For the sake of presentation, we use u to denote the
first-stage decision vector (u j , wl), and y to denote the
second-stage decision vector (xi j , y jlk, zlmk). Fuzzy vector
(cpi j (γ ), cp′

jlk(γ ), cp′′
lmk(γ ), dmk(γ )) is represented by ξ .

We sometimes denote y as y(γ ) to represent that y depends
on γ . However, the dependence of y on γ is completely dif-
ferent from the dependence of ξ on γ . The second-stage
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Table 1 List of notations
Notations Definitions

Sets and indexes

I The index set of suppliers

J The index set of plants

L The index set of warehouses

K The index set of products

M The index set of customers

Constant parameters

cm j The cost of building the plant j

cwl The cost of building the warehouse l

cq I
i The unit cost of raw material from supplier i

cq J
jk The unit production cost of product k in plant j

pmk The unit penalty cost of product k for customer m

si The capacity of raw material for supplier i

hl The storage capacity in warehouse l

a j The product capacity in plant j

r Pjk The processing requirement for per-unit product k in plant j

r Llk The processing requirement for per-unit product k in warehouse l

rk The raw material required for per-unit product k

Fuzzy parameters

cpi j (γ ) The unit transportation cost from supplier i to plant j for raw material

cp′
jlk(γ ) The unit transportation cost from plant j to warehouse l for product k

cp′′
lmk(γ ) The unit transportation cost from warehouse l to customer m for

product k

dmk(γ ) The demand of customer m for product k

Decision variables

xi j The amount of raw material transported from supplier i to plant j

y jlk The amount of product k transported from plant j to warehouse l

zlmk The amount of product k transported from warehouse l to customer m

z̃mk The shortfall of product k for customer m

u j Decision to build or not to build the plant j

wl Decision to build or not to build the warehouse l

decision vector y(γ ) is not functional but simply indicates
that the decisions y are typically not the same under different
realizations of γ .

If the first-stage decision vector u is fixed, and a realiza-
tion ξ(γ ) of fuzzy vector ξ is known, then the second-stage
programming model for the SCND problem reads

Q (u, ξ(γ )) = min
∑

i∈I

∑

j∈J

cpi j (γ )xi j +
∑

k∈K

∑

j∈J

∑

l∈L
cp′

jlk(γ )y jlk

+
∑

k∈K

∑

l∈L

∑

m∈M
cp′′

lmk(γ )zlmk

+
∑

i∈I
cq I

i

∑

j∈J

xi j +
∑

k∈K

∑

j∈J

cq J
jk

∑

l∈L
y jlk

+
∑

l∈L

∑

m∈M
pmk z̃mk

subject to:
∑

i∈I
xi j =

∑

k∈K
rk

∑

l∈L
y jlk , ∀ j ∈ J

∑

j∈J

y jlk =
∑

m∈M
zlmk , ∀l ∈ L ,∀k ∈ K

∑

l∈L
zlmk + z̃mk ≥ dmk(γ ), ∀m ∈ M,∀k ∈ K

∑

j∈J

xi j ≤ si , ∀i ∈ I

∑

k∈K
r Pjk

∑

l∈L
y jlk ≤ a j u j , ∀ j ∈ J

∑

k∈K
r Llk

∑

j∈J

y jlk ≤ hlwl , ∀l ∈ L

xi j ≥ 0, y jlk ≥ 0, zlmk ≥ 0, ∀i, j, k, l,m.

(4)

In problem (4), Q (u, ξ(γ )) is the optimal value of second-
stage problem (4), and called the recourse cost function.
Since Q (u, ξ(γ )) is a fuzzy variable, the total cost function
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f (u, ξ) =
∑

j∈J

cm ju j +
∑

l∈L
cwlwl + Q (u, ξ(γ )) (5)

is also a fuzzy variable. Therefore, determining the optimal
decision vector u leads to the problem of comparing fuzzy
cost variables { f (u, ξ)}u∈U, whereU is the set of all feasible
first-stage decision vectors. Since we focus on the total costs,
smaller values of f (u, ξ) are preferred. While comparing
fuzzy variables, it is crucial to consider the effect of variabil-
ity and specify the preference relations among fuzzy vari-
ables using risk measures. We will define a new risk measure
ρ, and build the following mean-risk model for our SCND
problem,

min
u∈U{Eξ [f(u, ξ)] + λρ(f(u, ξ))}, (6)

where Eξ is the expected value of fuzzy variable (Liu and
Liu 2002).

In problem (6), λ is a non-negative trade-off coefficient
representing the exchange rate of mean cost for risk. We also
refer to it as the risk coefficient,which is specified by decision
makers according to their risk preferences. Particularly, when
λ is 0, problem (6) is the risk-neural expected value model
(Liu 2005; Sun et al. 2011).

In the following, we specify ρ( f (u, ξ)) as the standard
semivariance of fuzzy cost f (u, ξ). In this case, the objective
function of problem (6) becomes

min
u∈U {Eξ [ f (u, ξ)] + λ

√
SV+[ f (u, ξ)]}, (7)

where the standard semivariance
√
SV+[ f (u, ξ)] is defined

as,

√
SV+[ f (u, ξ)]
=

√
Eξ [(( f (u, ξ) − Eξ [ f (u, ξ)])+)2]

=

√
√
√
√
√
√Eξ

⎡

⎢
⎣

⎛

⎝

⎛

⎝
∑

j∈J

cm j u j+
∑

l∈L
cwlwl+Q (u, ξ(γ )) −Eξ [ f (u, ξ)]

⎞

⎠

+⎞

⎠

2⎤

⎥
⎦

=
√
Eξ [((Q (u, ξ(γ )) − Eξ [Q (u, ξ(γ ))])+)2]

= √
SV+[Q (u, ξ(γ ))]. (8)

When X is a fuzzy variable, by the definition of standard
semivariance, we have

0 ≤
√
SV+[X ] ≤ σ [X ],

where σ [X ] = √
V [X ] is a standard variance, and if

X has a symmetric possibility distribution, then we have√
SV+[X ] = σ [X ].
Note that the recourse cost Q (u, ξ(γ )) is usually an asym-

metric fuzzy variable. Therefore, the standard semivariance

as a risk criterion is better than variance in our SCND prob-
lem.

Finally,we formally build a two-stagemean-risk program-
ming model for SCND problem as follows:

min
∑

j∈J
cm ju j + ∑

l∈L
cwlwl + Eξ [Q (u, ξ)]

+λ
√
SV+[Q (u, ξ)]

subject to: u j , wl ∈ {0, 1}, ∀ j ∈ J,∀l ∈ L ,

(9)

where Q(u, ξ(γ ) is the optimal value of the following pro-
gram problem

Q (u, ξ(γ )) = min
∑

i∈I
∑

j∈J
cpi j (γ )xi j + ∑

k∈K
∑

j∈J

∑

l∈L
cp′

jlk(γ )y jlk

+ ∑

k∈K
∑

l∈L
∑

m∈M
cp′′

lmk(γ )zlmk

+ ∑

i∈I
cq I

i

∑

j∈J
xi j + ∑

k∈K
∑

j∈J
cq J

jk

∑

l∈L
y jlk

+ ∑

l∈L
∑

m∈M
pmk z̃mk

subject to:
∑

i∈I
xi j = ∑

k∈K
rk

∑

l∈L
y jlk , ∀ j ∈ J

∑

j∈J
y jlk = ∑

m∈M
zlmk , ∀l ∈ L , ∀k ∈ K

∑

l∈L
zlmk+ z̃mk ≥dmk(γ ), ∀m ∈ M, ∀k ∈ K

∑

j∈J
xi j ≤ si , ∀i ∈ I

∑

k∈K
r Pjk

∑

l∈L
y jlk ≤ a j u j , ∀ j ∈ J

∑

k∈K
r Llk

∑

j∈J
y jlk ≤ hlwl , ∀l ∈ L

xi j ≥ 0, y jlk ≥ 0, zlmk ≥ 0, ∀i, j, k, l,m.

The objective of problem (9) is to minimize the total costs
with minimum semivariance, where the costs involve the
total investment and operational costs. The demand-shortage
penalty

∑
l∈L

∑
m∈M pmk z̃mk guarantees that Q (u, ξ(γ )) <

+∞ for all u and ξ(γ ). Therefore, for a fixed u and a known
fuzzy event γ , problem (4) always has feasible solutions.
To solve problem (9), the computation about the expected
value and standard semivariance of Q (u, ξ(γ )) is a chal-
lenge issue. In the next section, we define a new concept
about the value of fuzzy solution for problem (9),which helps
the reader to understand the advantages of the proposed opti-
mization method.

The value of fuzzy solution in mean-risk SCND problem

Since the mean-risk SCND problem (9) is computationally
difficult to be solved, some decision makers are inclined to
solve its simpler versions. One popular simple version is the
deterministic programming problem obtained by replacing
all fuzzy variables included in problem (9) by their expected
values. A natural question is whether this method is some-
times nearly optimal or whether it is totally inaccurate. The
purpose of this section is to give the theoretical answer to
this question.
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Ifwe replace all fuzzy variables included in problem (9) by
their expected values, then we obtain the following expected
value problem

EV = min
u∈U f

(
u, ξ̄

)
, (10)

where ξ̄ = E(ξ) denotes the expected value of fuzzy vector
ξ . Let ū(ξ̄ ) be an optimal solution of the expected value
problem (10), and called the expected value solution.

Firstly, the expected result of using the expected value
solution in the sense of mean-risk is defined as

MREV = Eξ [ f
(
ū(ξ̄ ), ξ

)] + λ

√
SV+[ f (

ū(ξ̄ ), ξ
)], (11)

where MR is the abbreviation of mean-risk. Therefore, the
quantity MREV measures how the decision ū(ξ̄ ) performs,
allowing the second-stage decision to be chosen optimally as
functions of ū(ξ̄ ) and ξ .

Secondly, we compare the expected value solution to
the so-called here-and-now solution corresponding to the
recourse problem (RP) defined in (9), and write that as

MRRP = min
u∈U

{
Eξ [ f (u, ξ)] + λ

√
SV+[ f (u, ξ)]

}
. (12)

Finally, we define the value of fuzzy solution in the sense of
mean-risk as the difference between the here-and-now solu-
tion and the expected value solution, i.e.,

MRV FS = MREV − MRRP. (13)

The following theorem establishes the relation between
the MREV and MRRP.

Theorem 1 For any two-stage mean-risk SCND problem
(9), the following relation holds true

MRRP ≤ MREV, (14)

which implies MRV FS ≥ 0.

Proof The solution ū(ξ̄ ) is just a feasible solution of mean-
risk SCND problem (9). Therefore, the mean-risk function
value associated with ū(ξ̄ ), denoted by MREV, is larger than
or equal to MRRP. It follows that MRV FS ≥ 0. The proof
of the theorem is complete.

Theorem 1 indicates that the MRVFS is nonnegative,
which gives us the motivation for the solution of two-stage
mean-risk SCND problem (9). The MRVFS measures the
value of knowing and using the possibility distributions on
future realizations. In this paper, our emphasis is on SCND
problem where no further information about fuzzy costs and
demands is available, so the quantity MRVFS becomes prac-
tically relevant to our mean-risk SCND problem.

The approximation method for mean-risk SCND
problem

In order to solve problem (9), it is required to compute the
expected value Eξ [Q (u, ξ(γ ))] aswell as the standard semi-
variance

√
SV+[Q (u, ξ)]. For any fixedu and realized value

ξ(γ ), we solve linear programming problem (4) by simplex
algorithm.When ξ is a continuous fuzzy vector, the computa-
tion of Eξ [Q (u, ξ(γ ))] requires to solve an infinite number
of linear programming problems in the second stage, which
is impossible from the viewpoint of the computation. There-
fore, we are required to approximate the continuous fuzzy
vector by a sequence of discrete fuzzy vectors. In the follow-
ing, we address this issue in details.

In our SCND problem, the parameter cpi j (γ ) is the
unit transportation cost of raw material from supplier i to
plant j , and it depends on a fuzzy parameter ξ1 repre-
senting the fuel price. Hence, cpi j (γ ) is a linear function
of ξ1, cpi j (γ ) = cp_ai j × ξ1(γ ) + cp_bi j , where cp_ai j
and cp_bi j are real numbers and cp_ai j is the distance
between supplier i and plant j . Using this method, we denote
cp′

jlk(γ ), cp′′
lmk(γ ) and dmk(γ ) by the linear functions of

ξ2(γ ), ξ3(γ ) and ξ4(γ ), respectively. Therefore, the parame-
ters cpi j (γ ), cp′

jlk(γ ), cp′′
lmk(γ ) and dmk(γ ) are the func-

tions of fuzzy vector ξ = (ξ1, ξ2, ξ3, ξ4). In addition, we
assume that the demands of customers and transportation
costs are related with each other. To characterize the rela-
tions among fuzzy variables ξ1, ξ2, ξ3 and ξ4, we assume
(ξ1, ξ2, ξ3, ξ4) has the following joint possibility distribution,

π(x) = exp

{

−1

2
(x − μ)T�(x − μ)

}

, (15)

where x = (x1, x2, x3, x4) ∈ ∏4
i=1[ai , bi ], � is a (4 × 4)

positive definite matrix, and μ ∈ R4 is a constant vector. In
this case, we approximate the continuous fuzzy vector ξ by
a sequence {ζn} of discrete fuzzy vectors (Liu 2006).

For any given integer n, the discrete fuzzy vector ζn =(
ζn,1, ζn,2, ζn,3, ζn,4

)
is defined as

ζn = gn (ξ) = (
gn,1(ξ1), gn,2(ξ2), gn,3(ξ3), gn,4(ξ4)

)
,

where the fuzzy variables ζn,i = gn,i (ξi ), n = 1, 2, . . . , i =
1, 2, 3, 4, such that

gn,i (ui )=sup

{
ki
n

| ki ∈ Z such that
ki
n

≤ ui

}

, ui ∈ [ai , bi ]

with Z being the set of integers. Using the approximation
method, fuzzy vector ζn takes its values in the following set
{
ζ̂
q
n = (ζ̂

q
n,1, ζ̂

q
n,2, ζ̂

q
n,3, ζ̂

q
n,4), q = 1, 2, . . . , N

}
,

and the possibility that ζn takes the value ζ̂
q
n is

Pos
{
ζn = ζ̂

q
n

}
= Pos

{
ζn,i = ζ̂

q
n,i , i = 1, 2, 3, 4

}
, q = 1, 2, . . . , N .
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For any fixed first-stage feasible decision u, when ζn
takes on the value ζ̂

q
n =(ζ̂

q
n,1, ζ̂

q
n,2, ζ̂

q
n,3, ζ̂

q
n,4), we solve the

second-stage linear programming (4) by simplex algorithm,
and denote the optimal value by Q(u, ζ̂

q
n ), q = 1, 2, . . . , N .

The possibility that Q(u, ζn) takes on the value Q(u, ζ̂
q
n ) is

vq = Pos{ζn = ζ̂
q
n }.

Rearrange the superscript q of Q(u, ζ̂
q
n ) such that

Q(u, ζ̂ 1
n ) ≤ Q(u, ζ̂ 2

n ) ≤ · · · ≤ Q(u, ζ̂ N
n ).

Then the value of Eξ [Q(u, ζn)] is calculated by

fm(u) =
N∑

q=1

wq Q(u, ζ̂
q
n ), (16)

where the weights wq , q = 1, 2, . . . , N , are given by

wq = 1

2

(
q

max
p=1

v p − q−1
max
p=0

v p
)

+ 1

2

(
N

max
p=q

v p − N+1
max
p=q+1

v p
)

(17)

with v0 = vN+1 = 0.
From the computational process of Eξ [Q (u, ζn)], we

have

Q(u, ζ̂ 1
n ) − fm(u) ≤ Q(u, ζ̂ 2

n ) − fm(u) ≤ · · ·
≤ Q(u, ζ̂ 3

n ) − fm(u).

As a consequence, the value of semivariance SV+[Q (u, ζn)]
is computed by

hm(u) =
√
√
√
√

N∑

q=nmin

wq

(
Q(u, ζ̂

q
n ) − fm(u)

)2
, (18)

where nmin is the smallest index q such that Q(u, ζ̂
q
n ) −

fm(u) ≥ 0, and the weights wq , q = 1, 2, . . . , N , are given
by Eq. (17).

Using the approximation method, we obtain the approxi-
mating optimization model of the SCND problem (9),

min = ∑

j∈J
cm ju j + ∑

l∈L
cwlwl +

N∑

q=1
wq Q(u, ζ̂

q
n )

+
√

N∑

q=nmin

wq

(
Q(u, ζ̂

q
n ) − E

)2

subject to: u j , wl ∈ {0, 1}, ∀ j ∈ J,∀l ∈ L ,

(19)

where E = ∑N
q=1 wq Q(u, ζ̂

q
n ), and Q(u, ζn(γ )) is the opti-

mal value of the following program model

Q (u, ζn(γ )) = min
∑

i∈I
∑

j∈J
ĉpni j (γ )xi j

+ ∑

k∈K
∑

j∈J

∑

l∈L
ˆcp′n

jlk (γ )y jlk

+ ∑

k∈K
∑

l∈L
∑

m∈M
ˆcp′′n

lmk (γ )zlmk

+ ∑

i∈I
cq Ii

∑

j∈J
xi j

+ ∑

k∈K
∑

j∈J
cq Jjk

∑

l∈L
y jlk

+ ∑

l∈L
∑

m∈M
pmk z̃mk

subject to:
∑

l∈L
zlmk + z̃mk ≥ d̂nmk (γ ), ∀m ∈ M, ∀k∈K

∑

i∈I
xi j = ∑

k∈K
rk

∑

l∈L
y jlk , ∀ j ∈ J

∑

j∈J
y jlk = ∑

m∈M
zlmk , ∀l ∈ L , ∀k ∈ K

∑

j∈J
xi j ≤ si , ∀i ∈ I

∑

k∈K
r Pjk

∑

l∈L
y jlk ≤ a j u j , ∀ j ∈ J

∑

k∈K
r Llk

∑

j∈J
y jlk ≤ hlwl , ∀l ∈ L

xi j ≥ 0, y jlk ≥ 0, zlmk ≥ 0, ∀i, j, k, l,m.

(20)

Problem (19) is a two-stage mixed-integer programming
model. The following theorem shows the objective value of
problem (19) converges to that of the SCND problem (9).

Theorem 2 Consider two-stage mean-risk SCND problem
(9). Suppose the parameter ξ = (ξ1, ξ2, ξ3, ξ4) is a contin-
uous fuzzy vector and its possibility distribution is given by
Eq. (15). If the sequence {ζn} of fuzzy vectors is the discretiza-
tion of fuzzy vector ξ , then for any fixed feasible decision
u ∈ U, we have

lim
n→∞ Eζn [Q (u, ζn)] = Eξ [Q (u, ξ)],

lim
n→∞

√
SV+

ζn
[Q (u, ζn)] =

√
SV+

ξ [Q (u, ξ)].

Proof For any fixed feasible solution u ∈ U and every
realization ξ(γ ) of fuzzy vector ξ , the second-stage value
function Q (u, ξ) is continuous on the compact subset
∏4

i=1[ai , bi ] of 
, where 
 is the support of ξ . Therefore,
the suppositions of the theorem satisfy the conditions of (Liu
2006, Theorem 3), which verifies the assertions of the theo-
rem.

Problem (19) is a nonlinear mixed-integer programming,
it is in general a nonconvex programming model. In the next
section, we will design a hybrid MA to solve this hard opti-
mization problem.

Hybrid solution methods

The MA combines the global search and the local search by
using the genetic algorithm to perform the exploration and
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exploitation, it keeps well the balance between the intensifi-
cation and diversification.

Representation

In the implementation of the MA, each chromosome U rep-
resents a first-stage decision vector. The component of U
includes 0s (zeros) and 1s (ones), where the value 1 indicates
that the corresponding plant or warehouse is built, while the
value 0 indicates that the corresponding plant or warehouse
is not built. A chromosome is represented by [plant1, plant2,
. . ., plantJ, warehouse1, . . ., warehouseL], where the dimen-
sion of the chromosome is the total number of plants and
warehouses. For example, if J = 4 and L = 5, then the chro-
mosome [0 1 0 1 0 0 1 1 0] means that plants 2, 4 and ware-
houses 3, 4 are built, while plants 1, 3 and warehouses 1, 2
and 5 are not built.

Initialization process

To generate a feasible chromosome, we first select ran-
domly a plant from the set {plant1, . . . , plantJ} and set its
value as 1, and select randomly a warehouse from the set
{warehouse1, . . . ,warehouseL} and set its value as 1. Then
the values of other components are set randomly from the
set {0, 1}. Repeating this process pop_si ze times, we obtain
pop_si ze feasible chromosomes U1,U2, . . . ,Upop_si ze.

The fitness of each chromosome is given by the value
of objective function. We compute the values of objective
function by the approximation method, in which we employ
LINGO 8.0 software to solve the second-stage linear pro-
gramming problem.

Recombination processes

Let the parameter Pr ∈ (0, 1) be the probability of recombi-
nation.We select the chromosomes as parents for recombina-
tion by the roulette wheel method. For any two parents A and
B, we have two operations in their recombination processes.
The first operation is the single-point recombination. Let the
recombination point k in the chromosome be generated ran-
domly from the interval [1, N], where N = J + L . Then the
parents, A and B, generate their offsprings C and D as fol-
lows. Chromosome C inherits the first part of parent A and
the second part of parent B, while chromosome D inherits
the first part of parent B and the second part of parent A.
Figure 1 illustrates this single-point recombination process.

The second operation is the section recombination. We
generate randomly two different points from interval [2, N-
1], and use the two points to divide the parents A and B into
three sections respectively. Then we exchange the middle
sections of parents A and B to generate their offsprings C and

Fig. 1 An example of the single-point recombination operation

Fig. 2 An example of the section recombination operation

Fig. 3 An example of the three-point mutation operation

Fig. 4 An example of the mirror operation

D respectively. Figure 2 illustrates this section recombination
process.

Mutation processes

After recombining processes, we continue themutation oper-
ation for the obtained chromosomes. A multi-point muta-
tion operation is adopted to renew the chromosomes. Let
the parameter Pm ∈ (0, 1) be the probability of mutation.
Then we select randomly k components from the chromo-
some (1 ≤ k ≤ N/3), and change their values as follows. If
the value in the selected component is 1, then we change it
into 0; otherwise we change the value 0 into 1. In Fig. 3, we
give a three-point mutation example for the case k = 3.

Local search

In our MA, the RVNS method is adopted as the local search
procedure, and it contains the mirror and shift neighborhood
structures. The chromosomes in the mirror neighborhood are
generated as follows. We first generate randomly two dif-
ferent points from the interval [1, N] to produce a section
between the twopoints. Thenwegenerate a newchromosome
by reversing the subsequence’s arrangement of the produced
section. If the new chromosome has the same arrangement
with the original chromosome, we apply a one-point muta-
tion operation to renew it. An example of themirror operation
is shown in Fig. 4.

The chromosomes in the shift neighborhood are generated
as follows. We first generate randomly two different points
from the interval [1, N] to produce a section between the two
points. Then we generate a new chromosome by removing
the produced section from its current position and inserting
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Fig. 5 An example of the shift operation

it in another randomly selected position. Figure 5 gives an
example to illustrate this shift operation.

The RVNS method starts from the original chromosome
and finds a better solution (chromosome) in the mirror and
shift neighborhoods. Firstly, the RVNS finds a better solution
in the mirror neighborhood, then it finds a better solution in
the shift neighborhood. If a better chromosome is found in
one neighborhood, then we update the original chromosome
using the better solution and continue the search procedure.
Otherwise, the RVNS changes its searching neighborhood
and finds a better solution in another new neighborhood.
The stop condition of our RVNS method is the maximum
searching time. The simplicity of the local search process is
explained by the following VC++ pseudocode.

s tat ic void LocalSearchRVNS( int Chrom[N0+1])
{ int i , j , t ;

int temp[N0+1];
Copy(Chrom,temp) ; t=1;
for ( i=1;i <3; i++)
{ i f ( i==1)

Mirror(temp) ;
i f ( i==2)
Shift (temp) ;

i f (Fitness (temp)<Fitness (Chrom) )
{

Copy(temp,Chrom) ; i=1;
}
i f ( t>T_max)

break ;
t++;

}
}

Finally, we summarize the process of the hybrid MA in
Algorithm 1, and provide the flowchart of the hybrid MA in
Fig. 6.

Algorithm 1 Hybrid Memetic algorithm for SCND
1: Set Gen, Gbest.
2: Initialization();
3: LocalSearchRVNS();
4: for i = 1; i < Gen; i + + do
5: Selection();
6: Recombination();
7: Mutation();
8: LocalSearchRVNS();
9: end for
10: return Gbest;

Fig. 6 The flowchart of the hybrid MA

Numerical experiments and comparison study

In this section, we present the computational results of
numerical experiments to assess the behavior of the designed
solution method. The hybrid MA has been coded in C++.
When computing the values of objective function,we employ
the LINGO 8.0 software to solve the second-stage linear pro-
gramming models. The numerical experiments are executed
on a personal computer (Intel Pentium(R) Dual-Core E5700
3.00GHZCPU andRAM2.00GB), using theMicrosoftWin-
dows 7 operating system.

Application examples and computational results

In this section, we consider a supply, production and distri-
bution network design problem. In our application example,
there are 4 raw material suppliers, 5 plants, 6 warehouses,
13 customers and 2 types of products. Suppose the supplers,
plants,warehouses and customers locate in 28 cities ofChina,
and their supply chain network is plotted in Fig. 7.
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Fig. 7 The network of the
application example

Table 2 The distance (km) from supplier si to plant p j

p1 p2 p3 p4 p5

s1 170 472 651 493 1,023

s2 440 714 655 370 1,146

s3 1,103 757 270 424 480

s4 1,040 957 421 365 918

In this problem,we assume the transportation costs among
cities are related to the distances and the fuel prices, and
the fuel prices are uncertain with time varying. The trans-
portation cost cpi j (γ ) is a linear function of ξ1, cpi j (γ ) =
cp_ai j × ξ1(γ ) + cp_bi j , where ξ1 is the unit fuel cost
per kilometer from suppliers to plants, cp_ai j is the dis-
tance between two cities and cp_bi j is the extra cost due
to the influence of other factors. Similarly, the transporta-
tion cost cp′

jlk(γ ) is a linear function of ξ2, cp′
jlk(γ ) =

cp′_rk × cp′_a jl × ξ2(γ ) + cp′_b jlk , where ξ2 is the unit
fuel cost per kilometer from plants to warehouses, cp′_a jl is
the distance between two cities, cp′_rk is the cost coefficient
for product k and cp′_b jlk is the extra cost; the transporta-

Table 3 The distance (km) from plant p j to warehouse wl

p1 p2 p3 p4 p5

w1 360 290 460 415 783

w2 267 344 1,051 778 1,000

w3 1,034 1,285 972 683 1,542

w4 1,402 1,300 723 715 1,123

w5 1,223 941 387 624 624

w6 1,016 1,138 762 491 1,313

tion cost cp′′
lmk(γ ) is a linear function of ξ3, cp′′

lmk(γ ) =
cp′′_rk × cp′′_alm × ξ3(γ ) + cp′′_blmk , where ξ3 is the
unit fuel cost per kilometer from warehouses to customers,
cp′′_alm is the distance between two cities, cp′′_rk is the
cost coefficient for product k and cp′′_blmk is the extra cost;
the demand dmk(γ ) is a linear function of ξ4, dmk(γ ) =
d_rk×d_am×ξ4(γ )+d_bmk , where ξ4 is the unit demandper
million people, d_am is the population size of citym, d_rk is
the demand coefficient for product k and d_bmk is the extra
demand.
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Table 4 The distance (km) from warehouse wl to customer cm

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

w1 606 574 547 674 722 1,106 366 517 293 829 1,013 1,083 1,131

w2 253 273 381 390 1,095 1,455 250 631 587 989 1,248 1,398 1,495

w3 1,510 1,533 1,073 1,326 881 484 1,365 1,446 1,138 1,650 1,637 1,547 1,172

w4 884 813 1,002 1,102 568 1,162 538 272 163 388 542 660 873

w5 1,450 1,375 1,404 1,564 258 846 1,086 828 648 782 547 407 282

w6 1,463 1,457 1,076 1,333 665 334 1,260 1,286 1,462 1,455 1,423 1,318 959

Table 5 The population (million) of the customer cm

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

Population 18.8 8.5 1.9 2.0 3.0 4.3 4.5 7.2 7.0 22.3 3.0 3.5 12.7

For the required data in our application example, the dis-
tances from the raw material supplier cities to the plant cities
are given in Table 2; the distances from the plant cities to
the warehouse cities are collected in Table 3; the distances
from the warehouse cities to the customer cities are pro-
vided in Table 4, and the populations of 13 cities are given
in Table 5. In addition, the extra costs cp_bi j , cp′_b jlk and
cp′′_blmk are generated randomly from the interval [1, 4]; the
extra demand d_bmk is generated randomly from the inter-
val [10, 30]; the cost coefficients cp′_rk, cp′′_rk and demand
coefficient d_rk are generated randomly from the interval
[0.7, 3]; the building costs cm j and cwl are generated ran-
domly from the interval [30000, 50000]; the specific capa-
bilities a j , hl and si are generated randomly from the interval
[1000, 6000]; the requirement parameters r Pjk, r

L
lk and rk are

generated randomly from the interval [0.5, 3], and the unit
production costs cq J

jk and cq
I
i are generated randomly from

[10, 30]. In our application example, we assume the fuzzy
vector (ξ1, ξ2, ξ3, ξ4) has the following joint possibility dis-
tribution

π(x) = exp

{

−1

2
(x − μ)T�(x − μ)

}

,

where � = UTU , and U is a nonsingular upper triangular
matrix. The elements of U are generated randomly from the
interval [0.1, 0.3], and the value of μ = (μ1, μ2, μ3, μ4)

T

is generated randomly from the interval [15, 35].
For λ = 10, we employ the hybrid MA to solve the

instance by using various sizes of sample points. During the
numerical experiments, we increase the number of realiza-
tions of fuzzy variable ξi from 3 to 12, i = 1, 2, 3, 4. As a
consequence, the total number of realizations of fuzzy vector
(ξ1, ξ2, ξ3, ξ4) increases from 34 to 124. Figure 8 illustrates
the convergence of themean value and standard semivariance
in our numerical experiments.

Comparison study

In our SCND problem, the MRVFS measures the value of
knowing and using the possibility distributions on future real-
izations of fuzzy parameters, so the quantity MRVFS is rel-
evant to our mean-risk SCND problem. We verify the asser-
tion via numerical experiments, and report the computational
results of the MREV, MRRP and MRVFS in Table 6.

The risk coefficient λ = 0 corresponds to the two-stage
risk-neutral SCND problem. In this case, the network struc-
ture of our example is [1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0]. On the
other hand, the risk coefficient λ > 0 corresponds to the two-
stage mean-risk SCND problem. In this case, we can obtain
different network structures by using various values of the
risk coefficient. For instance, when λ = 10, the network
structure is [1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0]; when λ = 10000,
the network structure is [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1].

Furthermore, from Table 6, we can see that the larger the
value of the risk coefficient λ, the larger the value of the
MRVFS. That is, we obtain large benefits from solving the
two-stage mean-risk SCND problem.

Conclusions

In this paper, we studied the SCND problem under uncer-
tainty, where the customer demands and transportation costs
are characterized by fuzzy variables with known possibility
distributions. The major new results include the following
several aspects.

(i) A new two-stage mean-risk SCND problem was pro-
posed, which incorporates the trade-off between the
expected costs and the risk brought out by fuzzy costs.
We specified the standard semivariance as a novel mea-
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Fig. 8 The convergence of the mean value and standard semivariance with λ = 10

Table 6 The value of fuzzy solution for application example

λ MRRP MREV MRVFS

0 1095763 1115969 20206

1 1156556 1236162 79606

10 1690238 2317902 627664

100 6997587 13135301 6137714

1000 59483417 121309291 61825874

10000 584274329 1203049192 618774863

sure for gauging the risk brought out by asymmetric
fuzzy costs.

(ii) We introduced the concepts of the MRRP, MREV and
MRVFS for the proposed two-stage mean-risk SCND
problem. Our emphasis in this paper is on the SCND
problem where no further information about costs and
demands is available, therefore the quantity MRVFS is
practically relevant to our mean-risk SCND problem.

(iii) When the customer demands and transportation costs
have continuous possibility distributions, we approxi-
mated the continuous fuzzy vector by a sequence of dis-
crete fuzzy vectors. To ensure the solution quality, we
discussed the convergence of the approximationmethod
in Theorem 2.

(iv) To solve the proposed SCND problem, we designed a
hybrid MA, in which the mirror operator and the shift
operator in the RVNS were used to act as the local
search. We also provided an application example with 4
raw material suppliers, 5 plants, 6 warehouses, 13 cus-
tomers and 2 types of products, and solved the instance
by the designed hybrid MA. The computational results
demonstrated the effectiveness of the developed solu-
tion method.
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